Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hui-Ping Zhong, ${ }^{\text {a }}$ La-Sheng
Long, ${ }^{\text {a }}$ Rong-Bin Huang, ${ }^{\text {a }}$
Lan-Sun Zheng ${ }^{\text {a }}$ and
Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a }}$ State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People's Republic of China, and
${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.041$
$w R$ factor $=0.089$
Data-to-parameter ratio $=16.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1,3-Di-2-pyridylthiourea monohydrate

The title compound, $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$, displays an intramoleculear $\mathrm{N}_{\text {amido }} \cdots \mathrm{N}_{\text {pyridyl }}$ hydrogen bond $[2.652$ (2) \AA] that locks the thiourea unit and one pyridyl ring into coplanarity [dihedral angle $2.7(1)^{\circ}$]. The second pyridyl ring is also coplanar with the thiourea unit [dihedral angle $2.9(1)^{\circ}$]. Its attached N atom interacts with the lattice water molecule to form a helical hydrogen-bonded chain that runs parallel to the b axis of the orthorhombic unit cell; adjacent chains are linked into a layer-like architecture by another hydrogen bond between the water molecule and the double-bonded S atom.

Comment

Previous attempts to prepare 1,3-di-2-pyridylthiourea, a compound that can be used for the separation of racemic mixtures of carboxylic acid derivatives, resulted in the isolation of the oxidation product. This fused four-ring compound features two pyridyl N atoms which are covalently linked to the S atom (Coles et al., 2000). A modification of the synthesis, with carbon disulfide in place of carbonyl sulfide, gave the expected compound, which crystallizes as a monohydrate, (I) (Fig. 1).

(I)

Selected geometric parameters are given in Table 1. The compound displays an $\mathrm{N}_{\text {amido }} \cdots \mathrm{N}_{\text {pyridyl }}$ intramolecular hydrogen bond $[\mathrm{N} 2 \cdots \mathrm{~N} 3=2.652$ (2) \AA; Table 2] that stabilizes the coplanarity of the thiourea unit with one pyridyl ring [dihedral angle $2.7(1)^{\circ}$]. The second pyridyl ring is also coplanar with the thiourea unit [dihedral angle $2.9(1)^{\circ}$]. Its attached N atom, N 4 , interacts with the lattice water molecule to form a helical hydrogen-bonded chain that runs parallel to the b axis (Fig. 2 and Table 2). Adjacent chains are linked into a layer-like architecture by another, somewhat weaker, hydrogen bond between the water molecule and the doublebonded S atom.

A similar intramolecular interaction [2.646 (4) Å] was also noted in 3-phenyl-1-(2-pyridyl)thiourea [dihedral angle $\left.5.4(1)^{\circ}\right]$; two molecules are linked across a centre of inversion to form a dimer (West et al., 1999). Here the phenyl ring is inclined to the thiourea unit by $58.0(1)^{\circ}$. On the other hand, in 1,3-diphenylthiourea (Ramnathan et al., 1995), for which no such intramolecular interaction is possible, each ring is

Received 16 September 2003
Accepted 29 September 2003 Online 7 October 2003

Figure 1

ORTEPII (Johnson, 1976) plot of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Figure 2
ORTEPII (Johnson, 1976) plot depicting the water-amide hydrogen bonding that leads to the formation of a helical chain running along the b axis.
inclined to the thiourea unit by $75.2(1)^{\circ}$. This large twist is necessary for the molecule to use its two amide H atoms to bind to the S atom of an adjacent molecule to form a zigzag chain. The $\mathrm{C}=\mathrm{S}$ distances in the three compounds are almost identical.

Experimental

An ethanol solution (50 ml) of 2-aminopyridine ($0.19 \mathrm{~g}, 2 \mathrm{mmol}$) and carbon disulfude ($9 \mathrm{ml}, 1.4 \mathrm{mmol}$), kept at 273 K , was stirred for 2 h . The solution was then heated at reflux for 12 h . The reaction was carried out under an N_{2} atmosphere. The solution was poured into water to afford a solid material that was recrystallized from aqueous ethanol.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=248.31$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.1921$ (1) \AA
$b=11.9609$ (3) A
$c=16.5666$ (3) \AA
$V=1226.97(4) \AA^{3}$
$Z=4$
$D_{x}=1.344 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: none
7255 measured reflections
2724 independent reflections

Mo $K \alpha$ radiation
Cell parameters from 1662 reflections
$\theta=2.4-23.3^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.37 \times 0.24 \times 0.22 \mathrm{~mm}$

2320 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-7 \rightarrow 7$
$k=-15 \rightarrow 9$
$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.089$
$S=0.95$
2724 reflections
170 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0493 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1119 Friedel pairs
Flack parameter $=0.06(8)$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C11	$1.688(2)$	$\mathrm{N} 4-\mathrm{C} 11$	$1.381(3)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.348(3)$	$\mathrm{N} 4-\mathrm{C} 10$	$1.412(2)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.408(3)$		
$\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 1$	$132.8(2)$	$\mathrm{N} 2-\mathrm{C} 11-\mathrm{S} 1$	$126.9(2)$
$\mathrm{C} 10-\mathrm{N} 4-\mathrm{C} 11$	$131.0(2)$	$\mathrm{N} 4-\mathrm{C} 11-\mathrm{S} 1$	$117.9(2)$
$\mathrm{N} 2-\mathrm{C} 11-\mathrm{N} 4$	$115.2(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 n \cdots \mathrm{~N} 3$	$0.85(1)$	$1.90(2)$	$2.652(2)$	$146(2)$
$\mathrm{N} 4-\mathrm{H} 4 n \cdots \mathrm{O} 1 w^{\mathrm{i}}$	$0.84(1)$	$2.19(1)$	$3.016(2)$	$166(2)$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{~N} 1$	$0.85(1)$	$2.18(1)$	$3.008(2)$	$166(2)$
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{~S} 1^{\mathrm{ii}}$	$0.84(1)$	$2.61(1)$	$3.414(2)$	$161(2)$

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $-x, y-\frac{1}{2}, \frac{3}{2}-z$.
The aromatic H atoms were placed at calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA$) in a riding-model approximation; $U_{\text {iso }}(\mathrm{H})$ values were set equal to $1.2 U_{\text {eq }}$ (parent C -atom). O - and N -bound H atoms were located and refined with an $\mathrm{O}-\mathrm{H}=\mathrm{N}-\mathrm{H}=0.86$ (1) \AA distance restraint.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant Nos. 2027104, 20273052 and 20221002), the

Department of Science \& Technology, China (grant No. 2002CCA01600), the National Science Foundation of Fujian Province (grant No. E0110001) and the University of Malaya for supporting this work.

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Coles, S. J., Douheret, D., Hursthouse, M. B. \& Kilburn, J. D. (2000). Acta Cryst. C56, 687-688.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ramnathan, A., Sivakumar, K., Subramanian, K., Janarthanan, N., Krishnamoorthy, R. \& Fun, H.-K. (1995). Acta Cryst. C51, 2446-2450.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
West, D. X., Hermetet, A. K., Ackerman, L. J., Valdés-Martínez, J. \& Hernández-Ortega, S. (1999). Acta Cryst. C55, 811-813.

